

Design Information Available at License Application

Presented to:

NRC/DOE Technical Exchange and Management Meeting on Preclosure Safety Analysis and Supporting Information

Presented by:

Stephen J. Cereghino
Licensing and Nuclear Safety Deputy Manager
Bechtel SAIC Company, LLC

May 16-17, 2006 Las Vegas, NV

LA and PCSA Supported by Detailed Design and Analyses

Design

- Waste handling
- Safety functions
- Physical
- System
- Component
- Supporting analyses

LA & PCSA

PCSA and Design Supporting Information

PCSA

- Internal hazards
- External hazards
- Event sequences
- Consequences
- NSDBs
- Design requirements
- Reliability assessments
- Procedural safety controls

LA = License Application

NSDB = Nuclear Safety Design Bases

PCSA = Preclosure Safety Analysis

Intended Changes to LA Content and Supporting Information

- Greater development of design
- More detailed evaluation of design feasibility
- Greater design information available for PCSA
- More detailed safety evaluation
- Explicit handling of uncertainty and human error
- More detailed presentation of design and PCSA in Safety Analysis Report (SAR) / License Application
- More complete justification of safety case

- Physical Design Source Documents
 - Project design criteria
 - Basis of design
 - Site plan and general arrangement drawings
 - Facility descriptions
 - Zone drawings (radiation, confinement, etc.)
 - Wall, slab, and structural steel drawings

- Physical Design Source Documents (cont.)
 - Typical embed, anchorage, and penetration details
 - Typical concrete and rebar details
 - Geo-technical data
 - Sliding and overturning assessment
 - Analytical models for structures
 - Soil-structure interaction analyses
 - In-structure response spectra

- System Design Source Documents
 - Project design criteria
 - Basis of design
 - System descriptions
 - Piping and instrumentation diagrams
 - Ventilation and instrumentation diagrams

- System Design Source Documents (cont.)
 - Mechanical handling flow diagrams
 - Functional logic diagrams (automatic important to safety [ITS] functions)
 - Electrical single line diagrams (site and facility)
 - Waste package drawings

- Component Design Source Documents
 - Project design criteria
 - Basis of design
 - System descriptions
 - Mechanical equipment envelopes
 - Mechanical handling schematics (ITS functions)
 - Sizing analyses

LA will Present the PCSA

- External hazards analysis
- Site-specific suitability assessments
- Military-industrial hazards analysis
- Aircraft crash frequency analysis
- Internal hazards analysis
- Fire hazards analysis
- Mechanical system fault trees
- Electrical system fault trees

LA will Present the PCSA (cont.)

- Overhead load handling assessments
- Seismic fragility assessment of structures
- Categorization of event sequences
- Consequence analyses
- Worker dose assessments
- Nuclear safety design bases
- ITS structures, systems, or components (SSCs) and Q-List
- Procedural safety controls

Safety Information is Contained in Physical, System and Component Design and PCSA Documents

- Location and arrangement of SSCs
- Materials
- Dimensions
- Waste package and transport, aging and disposal (TAD) canister characteristics
- ITS boundaries
- Seismic design boundaries
- Automatic versus manual actuation
- Fail position of components

- Local or remote control
- Interlocks
- Power sources
- Hazards assessment
- Event sequences
- Nuclear safety design bases
- ITS SSCs and Q-List
- Procedural safety controls
- Design assessment and validation

LA will Demonstrate ITS SSCs Can Perform Their Safety Functions

- Nuclear safety design bases and implementation
- Safety functions
- Description of required operation
- Design feasibility assessment
- Tables and figures
 - Functional requirements
 - Pertinent design information
 - Features demonstrating safety functions

ITS vs. non-ITS SSC Content in the License Application

Item	Non-ITS	ITS
Description	X	X
Design codes and standards	X	X
Operational processes and procedural needs	X	X
Safety functions	-	X
Procedural safety controls	-	X
Design criteria and design bases	-	X
Design methodologies	-	X
Consistency of materials with design methodologies	-	X
Design load combinations	-	X

Opportunities for Improvement from Previous Interactions

- Use of Codes and standards
- Thermal management
- Content of proposed technical specifications
- Structural analysis detail and presentation of results

Opportunities for Improvement from Previous Interactions (cont.)

- Implementation of nuclear safety design bases
- Reliability analysis of active safety functions
- Capability of load hold-down devices
- Justification for selected non-ITS systems

License Application and Supporting Bases

Safety **Analysis** Report

- LA addresses previous NRC/DOE discussions
- LA presents more detail to support PCSA
 LA presents results of structural analysis

Plans Developed in Support of License

- Emergency
- Physical Protection
- Material Control & Accounting

Principal Supporting Input:

- Analysis & Modeling Reports
- Basis of Design & SDDs / FDDs
- Preclosure Safety Analysis

Detailed Supporting Input:

- Data
- Calculations
- Studies
- Reference
- Codes & Standards
- Detailed Design Drawings
- Specifications
- Vendor Data

More extensive and detailed **PCSA** analysis

- More detailed design development
- Resolution of specific topics addressed in design and PCSA

